If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-11k-4=0
a = 3; b = -11; c = -4;
Δ = b2-4ac
Δ = -112-4·3·(-4)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-13}{2*3}=\frac{-2}{6} =-1/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+13}{2*3}=\frac{24}{6} =4 $
| 9x+9=10x-8 | | 10+2x=x+7 | | v/3-45=-37 | | g/5+27=34 | | 7u=18-2u | | -17x33x=288 | | x^2-19x+81=0 | | 1.03=1+x/1.05 | | 4=g/3-4 | | 6+4g=86 | | 3(2x-4)+3=4x+5 | | s-91/5=1 | | x3+78=126 | | C(y)=100y+6 | | x+4,2=19,5 | | 5x-1/3=2-3x-5/3 | | 96=2(k+22) | | 22.21=x/24.99 | | 10(v-89)=60 | | C(y)=0.75y+100 | | -4p+37=13 | | y/9+23=30 | | 5+3x-6=10 | | 3,1a+2,3=7,3 | | -2z(0.06)+0.07z+0.08z=60 | | h/2+10=12 | | x(-13)=-40 | | t/4+6=9 | | 17-2h=13 | | -50+x(3)=-11 | | -2m+3=3-m | | -50+x3=-11 |